3.8.14 \(\int \frac {x^4}{a+b+2 a x^2+a x^4} \, dx\)

Optimal. Leaf size=432 \[ \frac {\left (-2 \sqrt {a} \sqrt {a+b}+a+b\right ) \log \left (-\sqrt {2} \sqrt [4]{a} x \sqrt {\sqrt {a+b}-\sqrt {a}}+\sqrt {a+b}+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}-\sqrt {a}}}-\frac {\left (-2 \sqrt {a} \sqrt {a+b}+a+b\right ) \log \left (\sqrt {2} \sqrt [4]{a} x \sqrt {\sqrt {a+b}-\sqrt {a}}+\sqrt {a+b}+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}-\sqrt {a}}}+\frac {\left (2 \sqrt {a} \sqrt {a+b}+a+b\right ) \tan ^{-1}\left (\frac {\sqrt {\sqrt {a+b}-\sqrt {a}}-\sqrt {2} \sqrt [4]{a} x}{\sqrt {\sqrt {a+b}+\sqrt {a}}}\right )}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}+\sqrt {a}}}-\frac {\left (2 \sqrt {a} \sqrt {a+b}+a+b\right ) \tan ^{-1}\left (\frac {\sqrt {\sqrt {a+b}-\sqrt {a}}+\sqrt {2} \sqrt [4]{a} x}{\sqrt {\sqrt {a+b}+\sqrt {a}}}\right )}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}+\sqrt {a}}}+\frac {x}{a} \]

________________________________________________________________________________________

Rubi [A]  time = 0.89, antiderivative size = 432, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1122, 1169, 634, 618, 204, 628} \begin {gather*} \frac {\left (-2 \sqrt {a} \sqrt {a+b}+a+b\right ) \log \left (-\sqrt {2} \sqrt [4]{a} x \sqrt {\sqrt {a+b}-\sqrt {a}}+\sqrt {a+b}+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}-\sqrt {a}}}-\frac {\left (-2 \sqrt {a} \sqrt {a+b}+a+b\right ) \log \left (\sqrt {2} \sqrt [4]{a} x \sqrt {\sqrt {a+b}-\sqrt {a}}+\sqrt {a+b}+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}-\sqrt {a}}}+\frac {\left (2 \sqrt {a} \sqrt {a+b}+a+b\right ) \tan ^{-1}\left (\frac {\sqrt {\sqrt {a+b}-\sqrt {a}}-\sqrt {2} \sqrt [4]{a} x}{\sqrt {\sqrt {a+b}+\sqrt {a}}}\right )}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}+\sqrt {a}}}-\frac {\left (2 \sqrt {a} \sqrt {a+b}+a+b\right ) \tan ^{-1}\left (\frac {\sqrt {\sqrt {a+b}-\sqrt {a}}+\sqrt {2} \sqrt [4]{a} x}{\sqrt {\sqrt {a+b}+\sqrt {a}}}\right )}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a+b}+\sqrt {a}}}+\frac {x}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b + 2*a*x^2 + a*x^4),x]

[Out]

x/a + ((a + b + 2*Sqrt[a]*Sqrt[a + b])*ArcTan[(Sqrt[-Sqrt[a] + Sqrt[a + b]] - Sqrt[2]*a^(1/4)*x)/Sqrt[Sqrt[a]
+ Sqrt[a + b]]])/(2*Sqrt[2]*a^(5/4)*Sqrt[a + b]*Sqrt[Sqrt[a] + Sqrt[a + b]]) - ((a + b + 2*Sqrt[a]*Sqrt[a + b]
)*ArcTan[(Sqrt[-Sqrt[a] + Sqrt[a + b]] + Sqrt[2]*a^(1/4)*x)/Sqrt[Sqrt[a] + Sqrt[a + b]]])/(2*Sqrt[2]*a^(5/4)*S
qrt[a + b]*Sqrt[Sqrt[a] + Sqrt[a + b]]) + ((a + b - 2*Sqrt[a]*Sqrt[a + b])*Log[Sqrt[a + b] - Sqrt[2]*a^(1/4)*S
qrt[-Sqrt[a] + Sqrt[a + b]]*x + Sqrt[a]*x^2])/(4*Sqrt[2]*a^(5/4)*Sqrt[a + b]*Sqrt[-Sqrt[a] + Sqrt[a + b]]) - (
(a + b - 2*Sqrt[a]*Sqrt[a + b])*Log[Sqrt[a + b] + Sqrt[2]*a^(1/4)*Sqrt[-Sqrt[a] + Sqrt[a + b]]*x + Sqrt[a]*x^2
])/(4*Sqrt[2]*a^(5/4)*Sqrt[a + b]*Sqrt[-Sqrt[a] + Sqrt[a + b]])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1122

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d^3*(d*x)^(m - 3)*(a + b*
x^2 + c*x^4)^(p + 1))/(c*(m + 4*p + 1)), x] - Dist[d^4/(c*(m + 4*p + 1)), Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b
*(m + 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && Gt
Q[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1169

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {x^4}{a+b+2 a x^2+a x^4} \, dx &=\frac {x}{a}-\frac {\int \frac {a+b+2 a x^2}{a+b+2 a x^2+a x^4} \, dx}{a}\\ &=\frac {x}{a}-\frac {\int \frac {\frac {\sqrt {2} (a+b) \sqrt {-\sqrt {a}+\sqrt {a+b}}}{\sqrt [4]{a}}-\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) x}{\frac {\sqrt {a+b}}{\sqrt {a}}-\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}-\frac {\int \frac {\frac {\sqrt {2} (a+b) \sqrt {-\sqrt {a}+\sqrt {a+b}}}{\sqrt [4]{a}}+\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) x}{\frac {\sqrt {a+b}}{\sqrt {a}}+\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}\\ &=\frac {x}{a}+\frac {\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) \int \frac {-\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}}}{\sqrt [4]{a}}+2 x}{\frac {\sqrt {a+b}}{\sqrt {a}}-\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}-\frac {\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) \int \frac {\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}}}{\sqrt [4]{a}}+2 x}{\frac {\sqrt {a+b}}{\sqrt {a}}+\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}-\frac {\left (a+b+2 \sqrt {a} \sqrt {a+b}\right ) \int \frac {1}{\frac {\sqrt {a+b}}{\sqrt {a}}-\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 a^{3/2} \sqrt {a+b}}-\frac {\left (a+b+2 \sqrt {a} \sqrt {a+b}\right ) \int \frac {1}{\frac {\sqrt {a+b}}{\sqrt {a}}+\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 a^{3/2} \sqrt {a+b}}\\ &=\frac {x}{a}+\frac {\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) \log \left (\sqrt {a+b}-\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a}+\sqrt {a+b}} x+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}-\frac {\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) \log \left (\sqrt {a+b}+\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a}+\sqrt {a+b}} x+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}+\frac {\left (a+b+2 \sqrt {a} \sqrt {a+b}\right ) \operatorname {Subst}\left (\int \frac {1}{-2 \left (1+\frac {\sqrt {a+b}}{\sqrt {a}}\right )-x^2} \, dx,x,-\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}}}{\sqrt [4]{a}}+2 x\right )}{2 a^{3/2} \sqrt {a+b}}+\frac {\left (a+b+2 \sqrt {a} \sqrt {a+b}\right ) \operatorname {Subst}\left (\int \frac {1}{-2 \left (1+\frac {\sqrt {a+b}}{\sqrt {a}}\right )-x^2} \, dx,x,\frac {\sqrt {2} \sqrt {-\sqrt {a}+\sqrt {a+b}}}{\sqrt [4]{a}}+2 x\right )}{2 a^{3/2} \sqrt {a+b}}\\ &=\frac {x}{a}+\frac {\left (a+b+2 \sqrt {a} \sqrt {a+b}\right ) \tan ^{-1}\left (\frac {\sqrt {-\sqrt {a}+\sqrt {a+b}}-\sqrt {2} \sqrt [4]{a} x}{\sqrt {\sqrt {a}+\sqrt {a+b}}}\right )}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a}+\sqrt {a+b}}}-\frac {\left (a+b+2 \sqrt {a} \sqrt {a+b}\right ) \tan ^{-1}\left (\frac {\sqrt {-\sqrt {a}+\sqrt {a+b}}+\sqrt {2} \sqrt [4]{a} x}{\sqrt {\sqrt {a}+\sqrt {a+b}}}\right )}{2 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {\sqrt {a}+\sqrt {a+b}}}+\frac {\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) \log \left (\sqrt {a+b}-\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a}+\sqrt {a+b}} x+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}-\frac {\left (a+b-2 \sqrt {a} \sqrt {a+b}\right ) \log \left (\sqrt {a+b}+\sqrt {2} \sqrt [4]{a} \sqrt {-\sqrt {a}+\sqrt {a+b}} x+\sqrt {a} x^2\right )}{4 \sqrt {2} a^{5/4} \sqrt {a+b} \sqrt {-\sqrt {a}+\sqrt {a+b}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 164, normalized size = 0.38 \begin {gather*} -\frac {i \left (\sqrt {a}-i \sqrt {b}\right )^2 \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a-i \sqrt {a} \sqrt {b}}}\right )}{2 a \sqrt {b} \sqrt {a-i \sqrt {a} \sqrt {b}}}+\frac {i \left (\sqrt {a}+i \sqrt {b}\right )^2 \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a+i \sqrt {a} \sqrt {b}}}\right )}{2 a \sqrt {b} \sqrt {a+i \sqrt {a} \sqrt {b}}}+\frac {x}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b + 2*a*x^2 + a*x^4),x]

[Out]

x/a - ((I/2)*(Sqrt[a] - I*Sqrt[b])^2*ArcTan[(Sqrt[a]*x)/Sqrt[a - I*Sqrt[a]*Sqrt[b]]])/(a*Sqrt[a - I*Sqrt[a]*Sq
rt[b]]*Sqrt[b]) + ((I/2)*(Sqrt[a] + I*Sqrt[b])^2*ArcTan[(Sqrt[a]*x)/Sqrt[a + I*Sqrt[a]*Sqrt[b]]])/(a*Sqrt[a +
I*Sqrt[a]*Sqrt[b]]*Sqrt[b])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^4}{a+b+2 a x^2+a x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[x^4/(a + b + 2*a*x^2 + a*x^4),x]

[Out]

IntegrateAlgebraic[x^4/(a + b + 2*a*x^2 + a*x^4), x]

________________________________________________________________________________________

fricas [A]  time = 2.05, size = 615, normalized size = 1.42 \begin {gather*} \frac {a \sqrt {\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} + a - 3 \, b}{a^{2} b}} \log \left (-{\left (3 \, a^{2} + 2 \, a b - b^{2}\right )} x + {\left (a^{4} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} + 3 \, a^{2} b - a b^{2}\right )} \sqrt {\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} + a - 3 \, b}{a^{2} b}}\right ) - a \sqrt {\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} + a - 3 \, b}{a^{2} b}} \log \left (-{\left (3 \, a^{2} + 2 \, a b - b^{2}\right )} x - {\left (a^{4} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} + 3 \, a^{2} b - a b^{2}\right )} \sqrt {\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} + a - 3 \, b}{a^{2} b}}\right ) - a \sqrt {-\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} - a + 3 \, b}{a^{2} b}} \log \left (-{\left (3 \, a^{2} + 2 \, a b - b^{2}\right )} x + {\left (a^{4} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} - 3 \, a^{2} b + a b^{2}\right )} \sqrt {-\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} - a + 3 \, b}{a^{2} b}}\right ) + a \sqrt {-\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} - a + 3 \, b}{a^{2} b}} \log \left (-{\left (3 \, a^{2} + 2 \, a b - b^{2}\right )} x - {\left (a^{4} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} - 3 \, a^{2} b + a b^{2}\right )} \sqrt {-\frac {a^{2} b \sqrt {-\frac {9 \, a^{2} - 6 \, a b + b^{2}}{a^{5} b}} - a + 3 \, b}{a^{2} b}}\right ) + 4 \, x}{4 \, a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(a*x^4+2*a*x^2+a+b),x, algorithm="fricas")

[Out]

1/4*(a*sqrt((a^2*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) + a - 3*b)/(a^2*b))*log(-(3*a^2 + 2*a*b - b^2)*x + (a^
4*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) + 3*a^2*b - a*b^2)*sqrt((a^2*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) +
 a - 3*b)/(a^2*b))) - a*sqrt((a^2*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) + a - 3*b)/(a^2*b))*log(-(3*a^2 + 2*a
*b - b^2)*x - (a^4*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) + 3*a^2*b - a*b^2)*sqrt((a^2*b*sqrt(-(9*a^2 - 6*a*b
+ b^2)/(a^5*b)) + a - 3*b)/(a^2*b))) - a*sqrt(-(a^2*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) - a + 3*b)/(a^2*b))
*log(-(3*a^2 + 2*a*b - b^2)*x + (a^4*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) - 3*a^2*b + a*b^2)*sqrt(-(a^2*b*sq
rt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) - a + 3*b)/(a^2*b))) + a*sqrt(-(a^2*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b))
- a + 3*b)/(a^2*b))*log(-(3*a^2 + 2*a*b - b^2)*x - (a^4*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) - 3*a^2*b + a*b
^2)*sqrt(-(a^2*b*sqrt(-(9*a^2 - 6*a*b + b^2)/(a^5*b)) - a + 3*b)/(a^2*b))) + 4*x)/a

________________________________________________________________________________________

giac [A]  time = 0.35, size = 533, normalized size = 1.23 \begin {gather*} \frac {{\left (3 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a^{4} + \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a^{3} b - 4 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a^{2} b^{2} + 2 \, {\left (3 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a b + 4 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} b^{2}\right )} a^{2} - {\left (3 \, \sqrt {a^{2} + \sqrt {-a b} a} a^{3} b + 7 \, \sqrt {a^{2} + \sqrt {-a b} a} a^{2} b^{2} + 4 \, \sqrt {a^{2} + \sqrt {-a b} a} a b^{3}\right )} {\left | a \right |}\right )} \arctan \left (\frac {x}{\sqrt {\frac {a^{2} + \sqrt {a^{4} - {\left (a^{2} + a b\right )} a^{2}}}{a^{2}}}}\right )}{2 \, {\left (3 \, a^{6} b + 7 \, a^{5} b^{2} + 4 \, a^{4} b^{3}\right )}} - \frac {{\left (3 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a^{4} + \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a^{3} b - 4 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a^{2} b^{2} + 2 \, {\left (3 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a b + 4 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} b^{2}\right )} a^{2} + {\left (3 \, \sqrt {a^{2} - \sqrt {-a b} a} a^{3} b + 7 \, \sqrt {a^{2} - \sqrt {-a b} a} a^{2} b^{2} + 4 \, \sqrt {a^{2} - \sqrt {-a b} a} a b^{3}\right )} {\left | a \right |}\right )} \arctan \left (\frac {x}{\sqrt {\frac {a^{2} - \sqrt {a^{4} - {\left (a^{2} + a b\right )} a^{2}}}{a^{2}}}}\right )}{2 \, {\left (3 \, a^{6} b + 7 \, a^{5} b^{2} + 4 \, a^{4} b^{3}\right )}} + \frac {x}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(a*x^4+2*a*x^2+a+b),x, algorithm="giac")

[Out]

1/2*(3*sqrt(a^2 + sqrt(-a*b)*a)*sqrt(-a*b)*a^4 + sqrt(a^2 + sqrt(-a*b)*a)*sqrt(-a*b)*a^3*b - 4*sqrt(a^2 + sqrt
(-a*b)*a)*sqrt(-a*b)*a^2*b^2 + 2*(3*sqrt(a^2 + sqrt(-a*b)*a)*sqrt(-a*b)*a*b + 4*sqrt(a^2 + sqrt(-a*b)*a)*sqrt(
-a*b)*b^2)*a^2 - (3*sqrt(a^2 + sqrt(-a*b)*a)*a^3*b + 7*sqrt(a^2 + sqrt(-a*b)*a)*a^2*b^2 + 4*sqrt(a^2 + sqrt(-a
*b)*a)*a*b^3)*abs(a))*arctan(x/sqrt((a^2 + sqrt(a^4 - (a^2 + a*b)*a^2))/a^2))/(3*a^6*b + 7*a^5*b^2 + 4*a^4*b^3
) - 1/2*(3*sqrt(a^2 - sqrt(-a*b)*a)*sqrt(-a*b)*a^4 + sqrt(a^2 - sqrt(-a*b)*a)*sqrt(-a*b)*a^3*b - 4*sqrt(a^2 -
sqrt(-a*b)*a)*sqrt(-a*b)*a^2*b^2 + 2*(3*sqrt(a^2 - sqrt(-a*b)*a)*sqrt(-a*b)*a*b + 4*sqrt(a^2 - sqrt(-a*b)*a)*s
qrt(-a*b)*b^2)*a^2 + (3*sqrt(a^2 - sqrt(-a*b)*a)*a^3*b + 7*sqrt(a^2 - sqrt(-a*b)*a)*a^2*b^2 + 4*sqrt(a^2 - sqr
t(-a*b)*a)*a*b^3)*abs(a))*arctan(x/sqrt((a^2 - sqrt(a^4 - (a^2 + a*b)*a^2))/a^2))/(3*a^6*b + 7*a^5*b^2 + 4*a^4
*b^3) + x/a

________________________________________________________________________________________

maple [B]  time = 0.14, size = 1658, normalized size = 3.84

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(a*x^4+2*a*x^2+a+b),x)

[Out]

1/a*x+1/8/a/b*ln(-x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)-(a+b)^(1/2))*(a+b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)
^(1/2)+1/8/a^2/b*ln(-x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)-(a+b)^(1/2))*(a^2+a*b)^(1/2)*(a+b)^(1/2)*(2*(
a^2+a*b)^(1/2)-2*a)^(1/2)-1/4/a^(3/2)/b*ln(-x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)-(a+b)^(1/2))*(a^2+a*b)
^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)-1/4/a^(1/2)/b*ln(-x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)-(a+b)^(1/2)
)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/a/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((-2*a^(1/2)*x+(
2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(a+b)^(1/2)-1/4/a/b/(4*a^(1
/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((-2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a
+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(a+b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2
)-1/4/a^2/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((-2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(
1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(a^2+a*b)^(1/2)*(a+b)
^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/2/a^(3/2)/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan(
(-2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))
^(1/2)-2*a)^(1/2)*(a^2+a*b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/2/a^(1/2)/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b
))^(1/2)+2*a)^(1/2)*arctan((-2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/
2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)-1/8/a/b*ln(x^2*a^(1/2)+x*(2*(a*(a+b
))^(1/2)-2*a)^(1/2)+(a+b)^(1/2))*(a+b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)-1/8/a^2/b*ln(x^2*a^(1/2)+x*(2*(a*(a
+b))^(1/2)-2*a)^(1/2)+(a+b)^(1/2))*(a^2+a*b)^(1/2)*(a+b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/4/a^(3/2)/b*ln(
x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)+(a+b)^(1/2))*(a^2+a*b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/4/a^(
1/2)/b*ln(x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)+(a+b)^(1/2))*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)-1/a/(4*a^(1/2
)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)
^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(a+b)^(1/2)+1/4/a/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*a
rctan((2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(
a+b))^(1/2)-2*a)^(1/2)*(a+b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/4/a^2/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^
(1/2)+2*a)^(1/2)*arctan((2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2
*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(a^2+a*b)^(1/2)*(a+b)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)-1/2/a^(3/2)
/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((2*a^(1/2)*x+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a
^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(a^2+a*b)^(1/2)*(2*(a^2+a*b)^(1
/2)-2*a)^(1/2)-1/2/a^(1/2)/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((2*a^(1/2)*x+(2*(a*(a+
b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(2*(a
^2+a*b)^(1/2)-2*a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {x}{a} - \frac {\frac {{\left (3 \, \sqrt {a^{2} + \sqrt {-a b} a} a^{2} b + 4 \, \sqrt {a^{2} + \sqrt {-a b} a} a b^{2} - 3 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a^{2} - 4 \, \sqrt {a^{2} + \sqrt {-a b} a} \sqrt {-a b} a b\right )} a \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {\frac {2 \, a + \sqrt {-4 \, {\left (a + b\right )} a + 4 \, a^{2}}}{a}}}\right )}{2 \, {\left (3 \, a^{4} b + 4 \, a^{3} b^{2}\right )}} + \frac {{\left (3 \, \sqrt {a^{2} - \sqrt {-a b} a} a^{2} b + 4 \, \sqrt {a^{2} - \sqrt {-a b} a} a b^{2} + 3 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a^{2} + 4 \, \sqrt {a^{2} - \sqrt {-a b} a} \sqrt {-a b} a b\right )} a \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {\frac {2 \, a - \sqrt {-4 \, {\left (a + b\right )} a + 4 \, a^{2}}}{a}}}\right )}{2 \, {\left (3 \, a^{4} b + 4 \, a^{3} b^{2}\right )}}}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(a*x^4+2*a*x^2+a+b),x, algorithm="maxima")

[Out]

x/a - integrate((2*a*x^2 + a + b)/(a*x^4 + 2*a*x^2 + a + b), x)/a

________________________________________________________________________________________

mupad [B]  time = 4.65, size = 1147, normalized size = 2.66 \begin {gather*} \frac {x}{a}+2\,\mathrm {atanh}\left (\frac {24\,x\,\sqrt {-a^5\,b^3}\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}+\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}-\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{\frac {6\,\sqrt {-a^5\,b^3}}{a}+4\,a\,b^2+6\,a^2\,b-2\,b^3-\frac {2\,b^2\,\sqrt {-a^5\,b^3}}{a^3}+\frac {4\,b\,\sqrt {-a^5\,b^3}}{a^2}}-\frac {8\,x\,\sqrt {-a^5\,b^3}\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}+\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}-\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{\frac {4\,\sqrt {-a^5\,b^3}}{a}+\frac {6\,\sqrt {-a^5\,b^3}}{b}-2\,a\,b^2+4\,a^2\,b+6\,a^3-\frac {2\,b\,\sqrt {-a^5\,b^3}}{a^2}}-\frac {8\,a\,b^2\,x\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}+\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}-\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{4\,a\,b+\frac {4\,\sqrt {-a^5\,b^3}}{a^2}+6\,a^2-2\,b^2+\frac {6\,\sqrt {-a^5\,b^3}}{a\,b}-\frac {2\,b\,\sqrt {-a^5\,b^3}}{a^3}}+\frac {24\,a^2\,b\,x\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}+\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}-\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{4\,a\,b+\frac {4\,\sqrt {-a^5\,b^3}}{a^2}+6\,a^2-2\,b^2+\frac {6\,\sqrt {-a^5\,b^3}}{a\,b}-\frac {2\,b\,\sqrt {-a^5\,b^3}}{a^3}}\right )\,\sqrt {\frac {3\,a\,\sqrt {-a^5\,b^3}-b\,\sqrt {-a^5\,b^3}+a^4\,b-3\,a^3\,b^2}{16\,a^5\,b^2}}+2\,\mathrm {atanh}\left (\frac {24\,x\,\sqrt {-a^5\,b^3}\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}-\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}+\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{\frac {6\,\sqrt {-a^5\,b^3}}{a}-4\,a\,b^2-6\,a^2\,b+2\,b^3-\frac {2\,b^2\,\sqrt {-a^5\,b^3}}{a^3}+\frac {4\,b\,\sqrt {-a^5\,b^3}}{a^2}}-\frac {8\,x\,\sqrt {-a^5\,b^3}\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}-\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}+\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{\frac {4\,\sqrt {-a^5\,b^3}}{a}+\frac {6\,\sqrt {-a^5\,b^3}}{b}+2\,a\,b^2-4\,a^2\,b-6\,a^3-\frac {2\,b\,\sqrt {-a^5\,b^3}}{a^2}}-\frac {8\,a\,b^2\,x\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}-\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}+\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{4\,a\,b-\frac {4\,\sqrt {-a^5\,b^3}}{a^2}+6\,a^2-2\,b^2-\frac {6\,\sqrt {-a^5\,b^3}}{a\,b}+\frac {2\,b\,\sqrt {-a^5\,b^3}}{a^3}}+\frac {24\,a^2\,b\,x\,\sqrt {\frac {1}{16\,a\,b}-\frac {3}{16\,a^2}-\frac {3\,\sqrt {-a^5\,b^3}}{16\,a^4\,b^2}+\frac {\sqrt {-a^5\,b^3}}{16\,a^5\,b}}}{4\,a\,b-\frac {4\,\sqrt {-a^5\,b^3}}{a^2}+6\,a^2-2\,b^2-\frac {6\,\sqrt {-a^5\,b^3}}{a\,b}+\frac {2\,b\,\sqrt {-a^5\,b^3}}{a^3}}\right )\,\sqrt {-\frac {3\,a\,\sqrt {-a^5\,b^3}-b\,\sqrt {-a^5\,b^3}-a^4\,b+3\,a^3\,b^2}{16\,a^5\,b^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(a + b + 2*a*x^2 + a*x^4),x)

[Out]

x/a + 2*atanh((24*x*(-a^5*b^3)^(1/2)*(1/(16*a*b) - 3/(16*a^2) + (3*(-a^5*b^3)^(1/2))/(16*a^4*b^2) - (-a^5*b^3)
^(1/2)/(16*a^5*b))^(1/2))/((6*(-a^5*b^3)^(1/2))/a + 4*a*b^2 + 6*a^2*b - 2*b^3 - (2*b^2*(-a^5*b^3)^(1/2))/a^3 +
 (4*b*(-a^5*b^3)^(1/2))/a^2) - (8*x*(-a^5*b^3)^(1/2)*(1/(16*a*b) - 3/(16*a^2) + (3*(-a^5*b^3)^(1/2))/(16*a^4*b
^2) - (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/((4*(-a^5*b^3)^(1/2))/a + (6*(-a^5*b^3)^(1/2))/b - 2*a*b^2 + 4*a^2*b
 + 6*a^3 - (2*b*(-a^5*b^3)^(1/2))/a^2) - (8*a*b^2*x*(1/(16*a*b) - 3/(16*a^2) + (3*(-a^5*b^3)^(1/2))/(16*a^4*b^
2) - (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/(4*a*b + (4*(-a^5*b^3)^(1/2))/a^2 + 6*a^2 - 2*b^2 + (6*(-a^5*b^3)^(1/
2))/(a*b) - (2*b*(-a^5*b^3)^(1/2))/a^3) + (24*a^2*b*x*(1/(16*a*b) - 3/(16*a^2) + (3*(-a^5*b^3)^(1/2))/(16*a^4*
b^2) - (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/(4*a*b + (4*(-a^5*b^3)^(1/2))/a^2 + 6*a^2 - 2*b^2 + (6*(-a^5*b^3)^(
1/2))/(a*b) - (2*b*(-a^5*b^3)^(1/2))/a^3))*((3*a*(-a^5*b^3)^(1/2) - b*(-a^5*b^3)^(1/2) + a^4*b - 3*a^3*b^2)/(1
6*a^5*b^2))^(1/2) + 2*atanh((24*x*(-a^5*b^3)^(1/2)*(1/(16*a*b) - 3/(16*a^2) - (3*(-a^5*b^3)^(1/2))/(16*a^4*b^2
) + (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/((6*(-a^5*b^3)^(1/2))/a - 4*a*b^2 - 6*a^2*b + 2*b^3 - (2*b^2*(-a^5*b^3
)^(1/2))/a^3 + (4*b*(-a^5*b^3)^(1/2))/a^2) - (8*x*(-a^5*b^3)^(1/2)*(1/(16*a*b) - 3/(16*a^2) - (3*(-a^5*b^3)^(1
/2))/(16*a^4*b^2) + (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/((4*(-a^5*b^3)^(1/2))/a + (6*(-a^5*b^3)^(1/2))/b + 2*a
*b^2 - 4*a^2*b - 6*a^3 - (2*b*(-a^5*b^3)^(1/2))/a^2) - (8*a*b^2*x*(1/(16*a*b) - 3/(16*a^2) - (3*(-a^5*b^3)^(1/
2))/(16*a^4*b^2) + (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/(4*a*b - (4*(-a^5*b^3)^(1/2))/a^2 + 6*a^2 - 2*b^2 - (6*
(-a^5*b^3)^(1/2))/(a*b) + (2*b*(-a^5*b^3)^(1/2))/a^3) + (24*a^2*b*x*(1/(16*a*b) - 3/(16*a^2) - (3*(-a^5*b^3)^(
1/2))/(16*a^4*b^2) + (-a^5*b^3)^(1/2)/(16*a^5*b))^(1/2))/(4*a*b - (4*(-a^5*b^3)^(1/2))/a^2 + 6*a^2 - 2*b^2 - (
6*(-a^5*b^3)^(1/2))/(a*b) + (2*b*(-a^5*b^3)^(1/2))/a^3))*(-(3*a*(-a^5*b^3)^(1/2) - b*(-a^5*b^3)^(1/2) - a^4*b
+ 3*a^3*b^2)/(16*a^5*b^2))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 2.20, size = 105, normalized size = 0.24 \begin {gather*} \operatorname {RootSum} {\left (256 t^{4} a^{5} b^{2} + t^{2} \left (- 32 a^{4} b + 96 a^{3} b^{2}\right ) + a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}, \left (t \mapsto t \log {\left (x + \frac {- 64 t^{3} a^{4} b + 4 t a^{3} - 24 t a^{2} b + 4 t a b^{2}}{3 a^{2} + 2 a b - b^{2}} \right )} \right )\right )} + \frac {x}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(a*x**4+2*a*x**2+a+b),x)

[Out]

RootSum(256*_t**4*a**5*b**2 + _t**2*(-32*a**4*b + 96*a**3*b**2) + a**3 + 3*a**2*b + 3*a*b**2 + b**3, Lambda(_t
, _t*log(x + (-64*_t**3*a**4*b + 4*_t*a**3 - 24*_t*a**2*b + 4*_t*a*b**2)/(3*a**2 + 2*a*b - b**2)))) + x/a

________________________________________________________________________________________